Aprendizado de Máquina – Machine Learning

aprendizado automático (português brasileiro) ou a aprendizagem automática (português europeu) ou também aprendizado de máquina (português brasileiro) ou aprendizagem de máquina (português europeu) (em inglês: machine learning) é um subcampo da Engenharia e da ciência da computação que evoluiu do estudo de reconhecimento de padrões e da teoria do aprendizado computacional em inteligência artificial[1]. Em 1959, Arthur Samuel definiu aprendizado de máquina como o “campo de estudo que dá aos computadores a habilidade de aprender sem serem explicitamente programados”[2](livre tradução). O aprendizado automático explora o estudo e construção de algoritmos que podem aprender de seus erros e fazer previsões sobre dados[3]. Tais algoritmos operam construindo um modelo a partir de inputs amostrais a fim de fazer previsões ou decisões guiadas pelos dados ao invés de simplesmente seguindo inflexíveis e estáticas instruções programadas. Enquanto que na inteligência artificial existem dois tipos de raciocínio (o indutivo, que extrai regras e padrões de grandes conjuntos de dados, e o dedutivo), o aprendizado de máquina só se preocupa com o indutivo.

Algumas partes do aprendizado automático estão intimamente ligadas (e muitas vezes sobrepostas) à estatística computacional; uma disciplina que foca em como fazer previsões através do uso de computadores, com pesquisas focando nas propriedades dos métodos estatísticos e sua complexidade computacional. Ela tem fortes laços com a otimização matemática, que produz métodos, teoria e domínios de aplicação para este campo. O aprendizado automático é usado em uma variedade de tarefas computacionais onde criar e programar algoritmos explícitos é impraticável. Exemplos de aplicações incluem filtragem de spam, reconhecimento ótico de caracteres (OCR)[4]processamento de linguagem naturalmotores de buscadiagnósticos médicosbioinformáticareconhecimento de falareconhecimento de escritavisão computacional e locomoção de robôs. O aprendizado de máquinas é às vezes confundido com mineração de dados[5], que é um sub-campo que foca mais em análise exploratória de dados e é conhecido como aprendizado não supervisionado[6][7]. No campo da Análise de Dados, o aprendizado de máquinas é um método usado para planejar modelos complexos e algoritmos que prestam-se para fazer predições- no uso comercial, isso é conhecido como análise preditiva. Esses modelos analíticos permitem que pesquisadores, cientistas de dados, engenheiros, e analistas possam “produzir decisões e resultados confiáveis e repetitíveis” e descobrir os “insights escondidos” através do aprendizado das relações e tendências históricas nos dados.[8]